Read and explore your data
In this lab, you'll explore a dataset containing information on a university's recent graduates for each department. The URL this dataset can be downloaded from is stored in a variable called recent_grads_url. In this exercise, you'll read in this data using Python's pandas module.
Instructions100 XP
- Import pandas as pd.
- Read in the data from recent_grads_url (which is a CSV file) and assign it to a variable called recent_grads.
- Print the shape of recent_grads.
In [5]: # Import pandas
import pandas as pd
# Use pandas to read in recent_grads_url
recent_grads = pd.read_csv(recent_grads_url)
# Print the shape
print(recent_grads.shape)
(173, 21)
In [3]: # Import pandas
import pandas as pd
# Use pandas to read in recent_grads_url
recent_grads = pd.read_csv(recent_grads_url, index_col=0)
# Print the shape
print(recent_grads)
major_code major \
rank
1 2419 PETROLEUM ENGINEERING
2 2416 MINING AND MINERAL ENGINEERING
3 2415 METALLURGICAL ENGINEERING
4 2417 NAVAL ARCHITECTURE AND MARINE ENGINEERING
5 2405 CHEMICAL ENGINEERING
6 2418 NUCLEAR ENGINEERING
7 6202 ACTUARIAL SCIENCE
8 5001 ASTRONOMY AND ASTROPHYSICS
9 2414 MECHANICAL ENGINEERING
10 2408 ELECTRICAL ENGINEERING
11 2407 COMPUTER ENGINEERING
12 2401 AEROSPACE ENGINEERING
13 2404 BIOMEDICAL ENGINEERING
14 5008 MATERIALS SCIENCE
15 2409 ENGINEERING MECHANICS PHYSICS AND SCIENCE
16 2402 BIOLOGICAL ENGINEERING
17 2412 INDUSTRIAL AND MANUFACTURING ENGINEERING
18 2400 GENERAL ENGINEERING
19 2403 ARCHITECTURAL ENGINEERING
20 3201 COURT REPORTING
21 2102 COMPUTER SCIENCE
22 1104 FOOD SCIENCE
23 2502 ELECTRICAL ENGINEERING TECHNOLOGY
24 2413 MATERIALS ENGINEERING AND MATERIALS SCIENCE
25 6212 MANAGEMENT INFORMATION SYSTEMS AND STATISTICS
26 2406 CIVIL ENGINEERING
27 5601 CONSTRUCTION SERVICES
28 6204 OPERATIONS LOGISTICS AND E-COMMERCE
29 2499 MISCELLANEOUS ENGINEERING
30 5402 PUBLIC POLICY
... ... ...
144 1105 PLANT SCIENCE AND AGRONOMY
145 2308 SCIENCE AND COMPUTER TEACHER EDUCATION
146 5200 PSYCHOLOGY
147 6002 MUSIC
148 2306 PHYSICAL AND HEALTH EDUCATION TEACHING
149 6006 ART HISTORY AND CRITICISM
150 6000 FINE ARTS
151 2901 FAMILY AND CONSUMER SCIENCES
152 5404 SOCIAL WORK
153 1103 ANIMAL SCIENCES
154 6003 VISUAL AND PERFORMING ARTS
155 2312 TEACHER EDUCATION: MULTIPLE LEVELS
156 5299 MISCELLANEOUS PSYCHOLOGY
157 5403 HUMAN SERVICES AND COMMUNITY ORGANIZATION
158 3402 HUMANITIES
159 4901 THEOLOGY AND RELIGIOUS VOCATIONS
160 6007 STUDIO ARTS
161 2201 COSMETOLOGY SERVICES AND CULINARY ARTS
162 1199 MISCELLANEOUS AGRICULTURE
163 5502 ANTHROPOLOGY AND ARCHEOLOGY
164 6102 COMMUNICATION DISORDERS SCIENCES AND SERVICES
165 2307 EARLY CHILDHOOD EDUCATION
166 2603 OTHER FOREIGN LANGUAGES
167 6001 DRAMA AND THEATER ARTS
168 3302 COMPOSITION AND RHETORIC
169 3609 ZOOLOGY
170 5201 EDUCATIONAL PSYCHOLOGY
171 5202 CLINICAL PSYCHOLOGY
172 5203 COUNSELING PSYCHOLOGY
173 3501 LIBRARY SCIENCE
major_category total sample_size men women \
rank
1 Engineering 2339 36 2057 282
2 Engineering 756 7 679 77
3 Engineering 856 3 725 131
4 Engineering 1258 16 1123 135
5 Engineering 32260 289 21239 11021
6 Engineering 2573 17 2200 373
7 Business 3777 51 832 960
8 Physical Sciences 1792 10 2110 1667
9 Engineering 91227 1029 12953 2105
10 Engineering 81527 631 8407 6548
11 Engineering 41542 399 33258 8284
12 Engineering 15058 147 65511 16016
13 Engineering 14955 79 80320 10907
14 Engineering 4279 22 2949 1330
15 Engineering 4321 30 3526 795
16 Engineering 8925 55 6062 2863
17 Engineering 18968 183 12453 6515
18 Engineering 61152 425 45683 15469
19 Engineering 2825 26 1835 990
20 Law & Public Policy 1148 14 877 271
21 Computers & Mathematics 128319 1196 1837 2524
22 Agriculture & Natural Resources 4361 36 99743 28576
23 Engineering 11565 97 2020 973
24 Engineering 2993 22 8181 3384
25 Business 18713 278 13496 5217
26 Engineering 53153 565 41081 12072
27 Industrial Arts & Consumer Services 18498 295 2662 1385
28 Business 11732 156 488 232
29 Engineering 9133 118 7398 1735
30 Law & Public Policy 5978 55 2695 905
... ... ... ... ... ...
144 Agriculture & Natural Resources 7416 110 5079 7841
145 Education 6483 59 22357 16404
146 Psychology & Social Work 393735 2584 86648 307087
147 Arts 60633 419 15670 12543
148 Education 28213 259 29909 30724
149 Humanities & Liberal Arts 21030 204 3240 17790
150 Arts 74440 623 24786 49654
151 Industrial Arts & Consumer Services 58001 518 5347 16226
152 Psychology & Social Work 53552 374 2734 11709
153 Agriculture & Natural Resources 21573 255 5166 52835
154 Arts 16250 132 2013 4639
155 Education 14443 142 1936 7692
156 Psychology & Social Work 9628 60 885 8489
157 Psychology & Social Work 9374 89 5137 48415
158 Humanities & Liberal Arts 6652 49 4133 12117
159 Humanities & Liberal Arts 30207 310 404 1084
160 Arts 16977 182 4364 6146
161 Industrial Arts & Consumer Services 10510 117 18616 11591
162 Agriculture & Natural Resources 1488 24 4754 12223
163 Humanities & Liberal Arts 38844 247 1167 36422
164 Health 38279 95 11376 27468
165 Education 37589 342 1225 37054
166 Humanities & Liberal Arts 11204 56 3472 7732
167 Arts 43249 357 7022 11931
168 Humanities & Liberal Arts 18953 151 14440 28809
169 Biology & Life Science 8409 47 3050 5359
170 Psychology & Social Work 2854 7 522 2332
171 Psychology & Social Work 2838 13 568 2270
172 Psychology & Social Work 4626 21 931 3695
173 Education 1098 2 134 964
sharewomen employed full_time part_time full_time_year_round \
rank
1 0.120564 1976 1849 270 1207
2 0.101852 640 556 170 388
3 0.153037 648 558 133 340
4 0.107313 758 1069 150 692
5 0.341631 25694 23170 5180 16697
6 0.144967 1857 2038 264 1449
7 0.535714 2912 2924 296 2482
8 0.441356 1526 1085 553 827
9 0.139793 76442 71298 13101 54639
10 0.437847 61928 55450 12695 41413
11 0.199413 32506 30315 5146 23621
12 0.196450 11391 11106 2724 8790
13 0.119559 10047 9017 2694 5986
14 0.310820 3307 2751 878 1967
15 0.183985 3608 2999 811 2004
16 0.320784 6170 5455 1983 3413
17 0.343473 15604 14879 2243 11326
18 0.252960 44931 41235 7199 33540
19 0.350442 2575 2277 343 1848
20 0.236063 930 808 223 808
21 0.578766 102087 91485 18726 70932
22 0.222695 3149 2558 1121 1735
23 0.325092 8587 7530 1873 5681
24 0.292607 2449 1658 1040 1151
25 0.278790 16413 15141 2420 13017
26 0.227118 43041 38302 10080 29196
27 0.342229 16318 15690 1751 12313
28 0.322222 10027 9639 1183 7724
29 0.189970 7428 6811 1662 5476
30 0.251389 4547 4163 1306 2776
... ... ... ... ... ...
144 0.606889 6594 5798 1246 4522
145 0.423209 5362 4764 1227 3247
146 0.779933 307933 233205 115172 174438
147 0.444582 47662 29010 24943 21425
148 0.506721 23794 19420 7230 13651
149 0.845934 17579 13262 6140 9965
150 0.667034 59679 42764 23656 31877
151 0.752144 46624 36747 15872 26906
152 0.810704 45038 34941 13481 27588
153 0.910933 17112 14479 5353 10824
154 0.697384 12870 8447 6253 6322
155 0.798920 13076 11734 2214 8457
156 0.905590 7653 5201 3221 3838
157 0.904075 8294 6455 2405 5061
158 0.745662 5052 3565 2225 2661
159 0.728495 24202 18079 8767 13944
160 0.584776 13908 10451 5673 7413
161 0.383719 8650 7662 2064 5949
162 0.719974 1290 1098 335 936
163 0.968954 29633 20147 14515 13232
164 0.707136 29763 19975 13862 14460
165 0.967998 32551 27569 7001 20748
166 0.690111 7052 5197 3685 3214
167 0.629505 36165 25147 15994 16891
168 0.666119 15053 10121 6612 7832
169 0.637293 6259 5043 2190 3602
170 0.817099 2125 1848 572 1211
171 0.799859 2101 1724 648 1293
172 0.798746 3777 3154 965 2738
173 0.877960 742 593 237 410
unemployed unemployment_rate median p25th p75th college_jobs \
rank
1 37 0.018381 110000 95000 125000 1534
2 85 0.117241 75000 55000 90000 350
3 16 0.024096 73000 50000 105000 456
4 40 0.050125 70000 43000 80000 529
5 1672 0.061098 65000 50000 75000 18314
6 400 0.177226 65000 50000 102000 1142
7 308 0.095652 UN UN UN 1768
8 33 0.021167 62000 31500 109000 972
9 4650 0.057342 60000 48000 70000 52844
10 3895 0.059174 60000 45000 72000 45829
11 2275 0.065409 60000 45000 75000 23694
12 794 0.065162 60000 42000 70000 8184
13 1019 0.092084 60000 36000 70000 6439
14 78 0.023043 60000 39000 65000 2626
15 23 0.006334 58000 25000 74000 2439
16 589 0.087143 57100 40000 76000 3603
17 699 0.042876 57000 37900 67000 8306
18 2859 0.059824 56000 36000 69000 26898
19 170 0.061931 54000 38000 65000 1665
20 11 0.011690 54000 50000 54000 402
21 6884 0.063173 53000 39000 70000 68622
22 338 0.096931 53000 32000 70000 1183
23 824 0.087557 52000 35000 60000 5126
24 70 0.027789 52000 35000 62000 1911
25 1015 0.058240 51000 38000 60000 6342
26 3270 0.070610 50000 40000 60000 28526
27 1042 0.060023 50000 36000 60000 3275
28 504 0.047859 50000 40000 60000 1466
29 597 0.074393 50000 39000 65000 3445
30 670 0.128426 50000 35000 70000 1550
... ... ... ... ... ... ...
144 314 0.045455 32000 22900 40000 2089
145 266 0.047264 32000 28000 39000 4214
146 28169 0.083811 31500 24000 41000 125148
147 3918 0.075960 31000 22300 42000 13752
148 1920 0.074667 31000 24000 40000 12777
149 1128 0.060298 31000 23000 40000 5139
150 5486 0.084186 30500 21000 41000 20792
151 3355 0.067128 30000 22900 40000 20985
152 3329 0.068828 30000 25000 35000 27449
153 917 0.050862 30000 22000 40000 5443
154 1465 0.102197 30000 22000 40000 3849
155 496 0.036546 30000 24000 37000 10766
156 419 0.051908 30000 20800 40000 2960
157 326 0.037819 30000 24000 35000 2878
158 372 0.068584 30000 20000 49000 1168
159 1617 0.062628 29000 22000 38000 9927
160 1368 0.089552 29000 19200 38300 3948
161 510 0.055677 29000 20000 36000 563
162 82 0.059767 29000 23000 42100 483
163 3395 0.102792 28000 20000 38000 9805
164 1487 0.047584 28000 20000 40000 19957
165 1360 0.040105 28000 21000 35000 23515
166 846 0.107116 27500 22900 38000 2326
167 3040 0.077541 27000 19200 35000 6994
168 1340 0.081742 27000 20000 35000 4855
169 304 0.046320 26000 20000 39000 2771
170 148 0.065112 25000 24000 34000 1488
171 368 0.149048 25000 25000 40000 986
172 214 0.053621 23400 19200 26000 2403
173 87 0.104946 22000 20000 22000 288
non_college_jobs low_wage_jobs
rank
1 364 193
2 257 50
3 176 0
4 102 0
5 4440 972
6 657 244
7 314 259
8 500 220
9 16384 3253
10 10874 3170
11 5721 980
12 2425 372
13 2471 789
14 391 81
15 947 263
16 1595 524
17 3235 640
18 11734 3192
19 649 137
20 528 144
21 25667 5144
22 1274 485
23 2686 696
24 305 70
25 5741 708
26 9356 2899
27 5351 703
28 3629 285
29 2426 365
30 1871 340
... ... ...
144 3545 1231
145 1106 591
146 141860 48207
147 28786 9286
148 9328 2042
149 9738 3426
150 32725 11880
151 20133 5248
152 14416 4344
153 9571 2125
154 7635 2840
155 1949 722
156 3948 1650
157 4595 724
158 3354 1141
159 12037 3304
160 8707 3586
161 7384 3163
162 626 31
163 16693 6866
164 9404 5125
165 7705 2868
166 3703 1115
167 25313 11068
168 8100 3466
169 2947 743
170 615 82
171 870 622
172 1245 308
173 338 192
[173 rows x 20 columns]
'Python 응용 > DataScience교육_MS_DAT208x' 카테고리의 다른 글
[DAT208x] final lab 1-7, 1-8 (0) | 2021.10.23 |
---|---|
[DAT208x] final lab 1-4, 1-5, 1-6 (0) | 2021.10.23 |
[DAT208x] final lab 1-3 (0) | 2021.10.23 |
[DAT208x] final lab 1-2 (0) | 2021.10.23 |
python basic : Introduction to Python for Data Science ( Microsoft: DAT208x ) (0) | 2021.10.23 |